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Introduction 

DNA sequence alignment, ubiquitous in 

computational biology, is an example of a needle-in-a-

haystack problem. Fortunately, heuristics exist that 

can exploit the structure of the problem to prune the 

search space. Unfortunately, however, employing such 

heuristics can result in irregular data structures, 

random memory access patterns, and branchy 

execution paths, which hinder scalability on parallel 

architectures. We describe the design of a DNA 

sequence similarity detection algorithm that exhibits 

regular memory access patterns and high memory 

bandwidth utilization. We then compare OpenMP and 

CUDA implementations of the algorithm. 

 

Algorithm 

Given a word size k and block size n, the algorithm 

proceeds as follows. Divide a nucleotide query 

sequence Q into x non-overlapping subsequences of 

length n base pairs, yielding {Q1, Q2, ..., Qx}. Similarly, 

divide a nucleotide subject sequence S into y non-

overlapping subsequences of length n base pairs, 

yielding {S1, S2, ..., Sy}. Let qi be the set of unique k-

mers that occur in Qi, 1 ≤ i ≤ x. Similarly, let sj be the 

set of unique k-mers that occur in Sj, 1 ≤ j ≤ y. Finally, 

let Pij = |qi ∩sj | be the number of unique k-mers in 

common between Qi and Sj . 

 

 

 

Properties 

The set of unique k-mers corresponding to a 
subsequence can be represented compactly by a bit 
vector. When qi and sj are implemented in this 
fashion, computing Pij reduces to counting the 
number of bits set in qi ∧ sj. Since contemporary 
computer architectures offer hardware support for 
counting the number of bits set, this quantity can be 
computed efficiently. Furthermore, each Pij depends 
only upon qi and sj, so all xy such computations can 
proceed in parallel. Before proceeding, however, 
appropriate values for the parameters k and n must 
be chosen. 
 
Parameter selection 
Since the goal is to detect regions of similarity, k and n 

were chosen to maximize the correlation between Pij 

and the Smith-Waterman score for Qi and Sj. The 

optimal parameters of k = 9 and n = 2254 were 

obtained with discrete SPSA using Monte Carlo 

random sequences in the MATLAB Bioinformatics 

Toolbox. The results were then validated with real 

sequences.  

 

Implementation 

For ease of implementation, the near-optimal values 

of k = 8 and n = 2048 were ultimately chosen as 

algorithm parameters. To test scalability, the 

algorithm was implemented for CPU and GPU 

architectures. In both cases, random bit vectors were 

generated with x = y = 512. Since n=2048, this 

corresponds to artificial sequences of 1048576 base 

pairs each.  

Methodology 

Since the size of the problem is fixed and the size of 

the bit vectors is known, it is possible to compute the 

effective memory bandwidth consumed by the 

algorithm.  

 

CPU tests were conducted on a dual-quadcore Intel 

Xeon X5550 and were parallelized using OpenMP on 

icc 11. The maximum memory bandwidth of the 

X5550 is 32 GB/s. 

 

GPU tests were conducted on a variety of Nvidia GPU 

hardware and were parallelized using CUDA. For ease 

of comparison, the number of stream processors (SPs) 

for each GPU was normalized. The maximum memory 

bandwidth of the Tesla C1060 is 102 GB/s. 

 

Discussion 

Hardware population count instructions were used to 

count the number of bits set on both CPU and GPU 

architectures. In both cases, the algorithm scaled well 

and was able to effectively utilize the available 

memory bandwidth. 
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CPU 
cores 

Memory bandwidth 
(GB/s) 

Bandwidth ratio 

1 7.00 1.00 
2 13.94 1.99 
4 27.31 3.90 
8 28.01 4.00 

GPU # 
SPs 

# SPs 
(normalized) 

Memory 
bandwidth 
(GB/s) 

Bandwidth 
ratio 

GeForce 
9400M 

16 1 4.54 1.00 

GeForce 
9600M 
GT 

32 2 8.23 1.812 

GeForce 
9800GT 

112 7 28.36 6.25 

Tesla 
C1060 

240 15 67.45 14.86 


