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Abstract

We show that simple stochastic models of genome evolution lead to power law asymptotics of protein domain family size distribution. These models, called Birth, Death and Innovation Models (BDIM), represent a special class of balanced birth-and-death processes, in which domain duplication and deletion rates are asymptotically equal up to the second order. The simplest, linear BDIM shows an excellent fit to the observed distributions of domain family size in diverse prokaryotic and eukaryotic genomes. However, the stochastic version of the linear BDIM explored here predicts that the actual size of large paralogous families is reached on an unrealistically long timescale. We show that introduction of non-linearity, which might be interpreted as interaction of a particular order between individual family members, allows the model to achieve genome evolution rates that are better compatible with the current estimates of the rates of individual duplication/loss events.

1. Introduction.

Power distributions appear in an astonishing variety of fundamentally different contexts. 

These characteristic curves, that have been originally introduced as the Pareto law in economics (Pareto 1897) and the Zipf law in linguistics (Zipf 1949), describe the distribution of the number of links between documents in the Internet, the population of towns, the number of species that become extinct within a year, the number of sexual and other contacts between people, and numerous other quantities (Barabasi 2002; Mendes and Dorogovtsev 2003). Mathematically, these distributions are based on the negative power law: P(i)(ci-( where P(i) is the frequency of  nodes with exactly i  connections or sets with exactly i members, ( is a parameter which typically assumes values between 1 and 3, and  c is a normalization constant. Obviously, in double-logarithmic coordinates, the plot of P as a function of i is close to a straight line with a negative slope. 

The advent of genome sequencing brought about a surge in power law analyses in the field of genomics (Koonin et al. 2002; Luscombe et al. 2002; Searls 2002). The “dominance by a selected few” (Luscombe et al. 2002) embodied in the power laws has been noticed in the distribution of the number of transcripts per gene, the number of interactions per protein, the number of genes or pseudogenes in paralogous families, the number of connections per node in metabolic networks, and other quantities that can be obtained by genome analysis (Jeong et al. 2001; Jeong et al. 2000; Qian et al. 2001) (Luscombe et al. 2002). 

Power law distributions are scale-free, i.e., the shape of the distribution does not depend on the scaling of the analyzed variable. The principle of network evolution that results in the emergence of power distributions (and, accordingly, scale-free properties) is preferential attachment, whereby the probability of a node acquiring a new connection increases with the number of connections this node already has. Metaphorically (and going back to the ground-breaking work of Pareto), this principle may be described as “the rich get richer” or, in a biologically more relevant language, “the fit get fitter” (Barabasi 2002; Mendes and Dorogovtsev 2003)
A recent detailed study showed that the distributions of several genome-related quantities claimed to follow power laws, e.g., the number of transcripts per gene, are better described by the so-called generalized Pareto function: P(i) = c(i+a)-where a is an additional parameter (Kuznetsov 2001; Kuznetsov 2002). Obviously at large i (i>>a), a generalized Pareto distribution is indistinguishable from a power law, but at small i, it deviates significantly, with the magnitude of the deviation depending on a.  Notably, unlike power law distributions, generalized Pareto distributions do not show scale-free properties over the entire range of the argument.

The question that emerges when the same mathematical structure appears in apparently unrelated contexts is: are these formal similarities coincidental and superficial or do they reflect a deep connection at the level of evolutionary mechanisms? (Gisiger 2001; Sole and Bascompte 1996) The applicability of the preferential attachment principle to the evolution of systems with power law type distributions suggests that the latter view is closer to the truth. More specifically, however, the epistemological value of the analysis of these distributions seems to lie in the connection between specific forms of the distributions with distinguishable evolutionary models. Such evolutionary modeling has been applied to genome-specific distributions of paralogous family size (Huynen and van Nimwegen 1998; Karev et al. 2002; Qian et al. 2001; Rzhetsky and Gomez 2001), the distribution of folds and families in the entire protein universe (Dokholyan et al. 2002), and protein-protein interaction networks (Pastor-Satorras et al. 2003; Wagner 2003). 

In our previous work (Karev et al. 2002; Koonin et al. 2002), we undertook such a mathematical analysis using a simple model of evolution with duplication (birth), elimination (death) and de novo emergence (innovation) of a domain as elementary processes (hereinafter BDIM, after birth-death-innovation model). We proved that the power asymptotic appears if, and only if, birth and death rates of domains in families of sufficiently large size are balanced (asymptotically equal up to the second order) and that any power asymptotic with ((1 can appear only if the per domain duplication/deletion rates depend on the size of a domain family. We applied the developed formalism to the analysis of the size distributions of domains in individual prokaryotic and eukaryotic genomes and showed a good fit between these data and a particular form of the model, the second-order balanced linear BDIM. 

Here, we examine the non-deterministic version of BDIM and concentrate on the stochastic characteristics of the system, such as the probability of the formation a family of the given size before extinction and the mean times of formation and extinction of a family of a given size. We first investigate these issues within the framework of the linear 2nd order balanced birth-and-death process. Given the published estimates of the rates of gene duplication and loss, we conclude that this version of BDIM, which fits well the stationary distributions of family sizes for different genomes, predicts completely unrealistic times for reaching the observed sizes of the largest domain families. We suggest a non-linear modification of the initial model whose stochastic characteristics are more realistic.

2. Definitions, assumptions and empirical data

We treat a genome as a “bag” of genes (gene fragments), coding for protein domains, which we will simply call domains for brevity (see (Karev et al. 2002) for additional details and rationale). Domains are treated as independently evolving units disregarding the dependence between domains that tend to belong to the same multidomain protein. Each domain is considered to be a member of a family, which may have one or more members. Three classes of elementary events are considered: 

i) domain birth which generates a new member in the same family as a result of gene is duplication 

ii) domain death, i.e., inactivation and/or deletion, and 

iii)  innovation which generates a new family with one member. Innovation may occur via domain evolution from a non-coding sequence or a sequence of a non-globular protein, via horizontal gene transfer from another species, or via radical modification of a domain following a duplication. The rates of elementary events are considered to be independent of time (only homogeneous models are considered) and of the nature (structure, biological function, and other features) of individual families. 

The data on the size of domain families in sequenced genomes were from the previous work (Karev et al. 2002). Briefly, the domains were identified by comparing the CDD library of position-specific scoring matrices (PSSMs), which includes the domains from the Pfam and SMART databases, to the protein sequences from completely sequenced eukaryotic and prokaryotic genomes (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome) using the RPS-BLAST program (Marchler-Bauer et al. 2002).

In a finite genome, the maximal number of domains in a family obviously cannot exceed the total number of domains and, in reality, is probably much smaller. Let N be the maximal possible number of domain family members (note that almost all of the results below are valid with N=( under certain well defined conditions, which provide the existence of the ergodic distribution of the birth-and-death process). We also consider “virtual” families consisting of 0 domains. In the model, newborn domains are extracted from this class and dead domains return to it. In the previous work (Karev et al. 2002), we examined exclusively the deterministic version of BDIM. Introduction of the 0 class “closes” the model and, accordingly, transforms it into a Markov process. This provides for the possibility to explore the stochastic properties of the system. In these stochastic models, innovation was not introduced explicitly but is implied in the form of emergence of domains from the 0 class. 

We assume that: i) time is continuous and more than one elementary event is unlikely to occur in a short time interval (probability that more than one event occurs during an interval (t is o((t)2), ii) all elementary events are independent of each other, and iii) the rates of domain birth and death depend on family size only. Let pi(t) be the frequency of a domain family of size i. Then pi(t) satisfy a well known system of forward Kolmogorov equations for birth-and-death process (see, e.g., (Anderson 1991; Grimmett 1992)):

d p0(t)/dt = -(0 p0(t)+(1p1(t),

d p1(t)/dt = (0 p0(t)-(( 1+(1)p1(t)+(2p2(t),

d pi(t)/dt = ( i-1pi-1(t)-((i +(i)pi(t)+(i+1pi+1(t) for 1<i<N,
(2.1)

d pN(t)/dt = ( N-1pN-1(t)-(N pN(t).

Model (2.1) has a unique equilibrium ergodic distribution p1,..., pN defined by the equalities dpi(t)/dt=0 for 1(i(N , such that

pi= p0
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We will consider also the variant of the model (2.1) without the 0-state: 

dp1(t)/dt = -( 1 p1(t)+ (2p2(t),

d pi(t)/dt = ( i-1pi-1(t) -((i +(i) pi(t)+ ( i+1pi+1(t) for 1<i<N,
(2.3)

d pN(t)/dt = ( N-1pN-1(t) -(N pN(t).

This model describes the evolution of the size of a domain family that includes an indispensable (essential) gene and is not allowed to go extinct. For this model, the ergodic distribution is 

pi= p1 
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Mathematically, systems (2.1) and (2.3) describe the state probabilities of well-known birth-and-death processes with a finite number of states and reflecting boundaries. Although this classical process has been studied in detail, it has not been previously noticed that it is a natural source of the power-law distributions.

3. Ergodic distribution of the model and the power asymptotics

The ergodic distribution (2.2) or (2.4) is globally stable and is approached exponentially with respect to time from any initial state. Let us define a function ((i)=(i-1/(i and suppose that, for large i, the following expansion is valid:

((i)( (i-1/(i =is( (1+a/i + O(1/i2))

where s and a are real numbers and ( is positive. The following main assertions were proved previously (Karev et al. 2002):

Theorem 1. (i) if s(0 (non-balanced BDIM), then pi ~ ((i)s( i ia  where ((i) is the (-function;

(ii) if s=0 and ((1 (first-order balanced BDIM), then pi ~ ( iia;

(iii) if s=0; (=1 and a(0 (second-order balanced BDIM), then pi ~ ia;

(iv) if s=0; (=1 and a=0 (high-order balanced BDIM), then pi ~ 1.

The non-balanced BDIM (i) and high-order balanced BDIM (iv) are of little practical interest because the former results in an extremely sharply dropping (or rising) distribution, whereas the latter leads to a uniform distribution of domain family sizes. Neither of these cases is observed in real-world situations, so in what follows we consider only the balanced BDIM. Precise formulas for pi can be obtained for specific forms of (i and (i (see (Karev et al. 2002) for details) and several of these will be considered below.

In the simplest case, the per-domain birth and death rates do not depend on family size; thus, per-family birth and death rates are proportional to the number of domains in a family: (i=(i and (i=(i (simple BDIM). A simple BDIM can be either first-order balanced (((() or second-order balanced ((=(). According to the theorem above, the equilibrium distribution of domain family sizes could be either pi ~ ((/()i/i (truncated logarithmic distribution when (<() for the first-order balanced simple BDIM or pi~1/i for the second-order balanced simple BDIM. If a power asymptotics with ((1 is observed, a simple BDIM has to be rejected as the underlying model of evolution.

If the per-family birth and death rates linearly depend on the number of domains in a family ((i=((i+a), (i=((i+b); linear BDIM), the equilibrium distribution of domain family sizes is defined by the following formula ((=(/():

pi= p0 
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A linear BDIM is, by definition, at least first-order balanced; if (=( ((=1), the resulting second-order balanced linear BDIM has a power asymptotics with (=1+b-a. The total number of families and domains at equilibrium and the ratio of total birth rate to innovation rate formally depend on the maximum family size N. However, it can be shown that, for the real-world domain family size distributions, this dependence is very weak for large N.

A wide class of (i and (i functions can be described or approximated in terms of a rational BDIM:

(i=(P(i)=(
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In this case, the equilibrium frequencies have the following asymptotics 

pi~((i)( ( ii(
(3.3)

where (=(/(; (=
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4. Linear BDIM and its applications

Previously, we applied BDIMs to approximate the observed distribution of protein domains in several prokaryotic and eukaryotic genomes by minimizing the (2 value for the observed and predicted distributions. The simplest model that resulted in a good fit to the observed domain family size distributions for all analyzed genomes was the second-order balanced linear BDIM. For all analyzed genomes, P((2) for this model was >0.05, i.e., no significant difference between the model predictions and the observed data was detected. The asymptotics of the distribution implied by the second-order balanced linear BDIM is a power law, with the power equal to a-b-1 (a and b are the parameters of a linear BDIM). We observed that, for all analyzed genomes, a‑b‑1 < -1 (a<b), which corresponds to “synergy” between domains in a family. In other words, small families appear to be less stable during evolution than large families, whereas members of large families have a greater likelihood of survival over long intervals of evolution. The linear BDIM adequately accommodates even the largest of the identified domain families. Lineage-specific expansion of paralogous families is well recognized as one of the principal modes of adaptation. Thus, it appears that, quantitatively, adaptive family expansion is within the framework of the BDIMs, although these models do not explicitly incorporate the notion of selection.

In what follows, we study the behavior of the stochastic linear BDIM in more details. 

5. Probabilities of formation of families of different sizes for the linear BDIM

In is known (Bhattacharya and Waymire 1990; Dynkin and Yushkevich 1969) that the probability for the birth-and-death process to reach state n before reaching state 0 from an initial state i>0 is 

P(i,n)= (1+
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In terms of the BDIM (2.1), this means that the probability of formation of a family of size n starting from a family of size i before getting to extinction is given by (5.1); in particular, the probability that a singleton expands to a family of size n before dying is

P(1,n)=1/(1+
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For the linear 2nd order balanced BDIM, the probability that a singleton expands to a family of size n before dying is

P(1,n)= 1/(1+
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where (=b-a+1.

Note that these probabilities have the power asymptotics for large n:
P(1,n) (
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with the same degree as the equilibrium frequencies of the families. The values of probabilities P(1,n) for different species are shown in Figure 1 and Table 2.

6. Mean time of extinction of a family of a given size for the linear BDIM

The random birth-and-death process (2.1) certainly visits the state 0 in the course of time; this means that any domain family will eventually get extinct (and then formally can be "reborn", returning from the 0-class). Let us compute the mean time of extinction of a family of the given size; the mean time of extinction of the largest family is the value of greatest interest.

Let us denote W(n)=inf{t: X(t)=0(X(0)=n} the time of the first passage of state 0 from the initial state n; W(n) is a random variable for each n.  The mean time of extinction of the family of initial size n, E(W(n)), can be calculated using the following formula (see, e.g., (Anderson 1991; Bhattacharya and Waymire 1990)):

E(W(n))= 
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For the linear 2nd order balanced BDIM, E(W(n)) = 1/( En, where

En =
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The plot of En versus n for different species is shown in Figure 2.

7. The mean time of formation of a family of a given size for the linear BDIM

Let us denote T(i,n)=inf{t: X(t)=n(X(0)=i} the time of the first passage of state n from the initial state i; T(i,n) is a random variable for each i, n. The mean time of the first passage for BDIM (2.1), m(i;n)=E(T(i,n)), can be calculated using the following formula (Dynkin, Jushkevich, ch.4, Bhattacharya, Waymire, ch.3):

m(i;n)= 
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It is convenient to explicitly write m(1;n), the mean time required to reach state n from state 1 in the form: 
m(1,n)= m0(n) + m1(n),

where m0(n)= 1/(0
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The term  m0(n) is the mean time elapsed before the system leaves the 0 state for the last time and the term m1(n) is the mean time of formation of a family of size n from a singleton after its last resurrection.

The values of (m1(n) and (0m0(n) for the second order balanced linear stochastic BDIM and for each of the genomes are rather close to each other. For example, m(1,1151) =1/( 300665.09 + 1/(0 382994.665 for H. sapiens (1151 is the size of the largest family encoded in the human genome according to our data). Hence the relative input of the two terms to the total mean formation time depends on the values of ( and (0, respectively. It can be easily shown that M(n), the mean formation time from an essential  singleton (see model (2.3)), is exactly equal to m1(n). In what follows we study only the mean time M(n); for the linear BDIM 

M(n)= 1/( Mn =1/(
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Fig. 3 shows the dependence of the mean time of formation of the families, M(n), on (.
Next, let us consider the process of formation of families in more detail and find the mean time of formation, from an essential singleton, of a family of size n, M(n). Plots of Mn (the mean time of formation for (=1) are shown on Figures 4a and 4b.

Let us note that ( is an interior parameter of the model and cannot be equated with the actual average duplication rate, rdu, which can be estimated from empirical data. To connect these two values, one should take into account that rdu is estimated as the average duplication rate per domain over the entire genome. As (i/i is the duplication rate per domain in a family of size i, then, for model (2.3)

rdu =
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where N is the maximal family size in the given genome (note that the duplication rate in class N is 0 by definition).

Then, after simple algebra, it can be shown that, for the linear 2nd order balanced model, the following coefficient, cdu , connects the model parameter ( with the empirical estimate of the duplication rate:

cdu= rdu/ ( = 
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The values of MN and cdu for different species are given in Table 2. The model parameter ( actually is of the same order of magnitude as the mean duplication rate per domain.

Summarizing the results obtained for the stochastic characteristics of the linear BDIM, we found that, firstly, there is an extremely large difference between the times of formation and extinction of the largest families for some genomes, the latter being much more rapid. Secondly, and most importantly, the above connection between ( and rdu allows one to use the available conservative empirical estimates of duplications rates to express the mean family formation times in real time units instead of the dimensionless 1/( units.  These estimates, which were produced by counting the number of recent duplicates in three eukaryotic genomes and dividing this number by the estimated rate of silent nucleotide substitutions, give  rdu ≈2x10-8 duplications/gene/year (Lynch and Conery 2000). Substituting these values into (7.5) and then into (7.3) gives M(n) ~ 1013-1014 yrs, which is three to four orders of magnitude greater than the current estimate for the age of the Universe (Krauss and Chaboyer 2003). Thus, the family formation times given by the linear BDIM would become realistic only if the recent analyses underestimated the gene duplication rate by a factor of ~104, which does not seem plausible. Accordingly, the linear BDIM cannot provide a realistic description of genome evolution and we should consider non-linear, higher order models.

8. Non-linear modifications of the BDIM

Theorem 1 asserts that a large class of models, namely the second order balanced BDIMs, provide any given power asymptotic of the stationary frequencies of family sizes. The linear BDIM is the simplest model that has the desirable asymptotics of stationary frequencies and fits well the real data. However, the more detailed analysis of the random process corresponding to the linear BDIM described above in sections 5, 6 and 7 showed that the characteristics of the stochastic behavior of the linear BDIM seem to be inconsistent with empirical data. The main problem is that the stochastic evolution of the linear BDIM is “too slow” and does not allow the formation of the large families that are actually observed in genomes.

Thus, our goal in this section is to modify the linear BDIM in such a way that:

i. the stationary distribution of the family sizes stays the same as for the linear BDIM;

ii. new models account for much more rapid evolution of family sizes for realistic values of duplication rates;

iii. the ratio of the mean times of family formation and extinction is substantially greater than it is under the linear model.

To provide for fast evolution of family sizes, the mean sojourn times ti in each state i, ti=1/((i +(i), should be substantially shorter then those in the linear model. The key mathematical point for the required modification is given by the following:

Proposition 1. Let g(i), i=0,…N, be a positive function, g(0)=1. Consider the new transformed model (2.1) under simultaneous transformation of duplication and deletion rates given by the relations:

(*i = (i g(i),  (*i = (i g(i-1)
(8.1)

Then the stationary distribution for the BDIM with transformed birth and death rates, (*i and (*i, is the same as for the original model.

Note that the mean sojourn time of the modified model is t*i =1/((i g(i)+(i g(i-1)). Thus, ti can be arbitrarily decreased by choosing the appropriate function g(i). It should be emphasized that the values of parameters a and b that have been previously determined for the linear BDIM to fit empirical data for different species (and Table 1) can be employed for the modified models because the transformation (8.1) does not change the stationary distribution. 

We show that the problems formulated above (i-iii) can be solved by using non-linear BDIM modifications with the function g(i)=(i+1)d. In this section, we briefly describe the polynomial BDIM of degrees k=2 and 3, which correspond to cases d=1 and 2 respectively. Other possible non-linear refinements will be discussed elsewhere.

Informally, polynomial BDIMs can be introduced as follows. Under the linear BDIM, the dependence of the birth and death rates on family size is very weak. This model actually does not include any form of interactions between family members, the growth rate is almost proportional to the family size and there is no significant feedback between the family size and growth rate. In contrast, the quadratic model includes dependence of birth and death rates of individual domains on pairwise interactions, whereas higher order models imply more complex interactions. In general, if interactions of order k are postulated, then the second order balanced BDIM has (i ~Pk(i) and (i ~ Qk(i), where Pk(i) and Qk(i) are polynomials on i of the same degree k and the same higher coefficients. We show here that non-linear polynomial BDIM of degree >2 predict evolution rates that are dramatically greater then those for the linear BDIM and could be compatible with empirical estimates of duplication rates.

Let us consider the second order balanced quadratic BDIM with birth and death rates 

(i= ((i+a)(i+1), (i= ((i+b)i,
(8.2)

i.e., the quadratic BDIM is a transformation of the linear BDIM with g(i)=i+1.

Similarly, the cubic BDIM has the birth and death rate as:

(i= ((i+a)(i+1)2, (i= ((i+b)i2.
(8.3)

and is a second order balanced BDIM resulting from the transformation of the linear BDIM by using the function g(i)=(i+1)2. The equilibrium distributions for the quadratic and cubic BDIMs are exactly the same as that for the corresponding linear BDIM, but the stochastic properties of the higher order models are dramatically different from those of the linear model. The quadratic and particularly the cubic BDIMs display much more rapid evolution of genome size than the linear model with the same value of the parameter ( (Tables 3 and 4 and Figs. 6, 8). This brings the time required for the formation of families of the observed size closer to realistic time spans. Specifically, with the empirical estimates of the duplication rates used above for the linear BDIM, both the quadratic and the cubic model give M(n) ~ 1011 yrs. Although the cubic model results in a much greater duplication rate than the quadratic model (compare Figs. 6 and 8), it also implies a much greater rdu/ ( ratio, thus yielding similar time estimates (compare Tables 3 and 4). 
The stochastic behavior of the system and its characteristics also can be investigated in the broader framework of rational BDIMs. For example, for models of the form (8.1), the mean time of family formation depending on the model degree is shown in Figure 9. This plot clearly illustrates the dramatic acceleration of evolution with the increase of model degree. 

9. Conclusions and perspective
In the previous work, we showed that the linear BDIM was the simplest of a broad class of birth, death and innovation models that gave a good fit with the empirically observed stationary distribution of domain family size for a variety of genomes. However, when explored in the stochastic regime, this model turned out to be inadequate, i.e., unable to account for sufficiently fast evolution to reach the observed family sizes given the time available for genome evolution and the best current estimates of duplication rate. Thus, we examined higher order degree BDIMs, which were obtained by a simple transformation of the linear model and generated the same stationary family size distribution. Models with degree between 2 and 3 yielded much more rapid evolution than the linear BDIM, which brings the characteristic times of family formation closer to realistic values, although these times are still approximately two order of magnitude greater than expected  (~1011 yrs compared to the expected ~109 yrs). This remaining discrepancy could be due to the conservative nature of the used estimates of the duplication rates from empirical data (Lynch and Conery 2000) and/or to over-simplification in the manner these estimates were incorporated into the BDIM formalism. 

Unlike the linear BDIM, higher order models imply interaction between family members, e.g., pairwise interactions in the case of the quadratic BDIM and third order interactions for the cubic BDIM. The interpretation of these interactions remains open. It does not seem likely that they should be rationalized as actual physical, functional or regulatory interactions. More realistically, these interactions could be thought of as a way to introduce into the model the positive selection pressure that drives the proliferation of paralogous families and accelerates it to such an extent that formation of the largest families observed in sequenced genomes becomes feasible. The adaptive significance of lineage-specific expansion of paralogous gene families has been characterized in detail in comparative-genomic studies (Jordan et al. 2001; Lespinet et al. 2002). Selection is the key element that is missing from the previous attempts on modeling genome evolution as a birth and death process and higher order BDIMs might be a means to bring it in “through the back door”.

Further research directions could include detailed analysis of the predictions on the dependence of per domain birth and death rates made under different versions of BDIMs and their comparison with empirical data as well as development of more sophisticated evolutionary models.
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Figure legends

Fig. 1. Probabilities of formation of families starting from a singleton P(1,n) versus the family size (n) for the linear BDIM
The plot is in double logarithmic scale. Species (bottom to top): Caenorhabditis. elegans, Homo sapiens, Arabidopsis thaliana, Drosophila melanogaster.
Fig. 2. The mean time of extinction (En) versus the family size (n) for the linear BDIM.

Time is express in 1/ units.  Species (bottom to top): D. melanogaster, C. elegans, H. sapiens, A. thaliana.

Fig. 3. Mean time of formation M(n) (in billions of years) versus the duplication rate (() for H. sapiens and A. thaliana (left to right).

Fig. 4. 

a. Mean time of formation Mn (in 1/ units) versus family size (n) for the linear BDIM. Species (left to right): D. melanogaster, H. sapiens, A. thaliana and C. elegans.

b. Mn versus n in double logarithmic scale for the linear BDIM.

Species (top to bottom): D. melanogaster, H. sapiens, A. thaliana and C. elegans.
Fig. 5. Probability of formation of families starting from a singleton for the quadratic BDIM.

The plot is in double logarithmic scale. Species (top to bottom): C. elegans, H. sapiens, A. thaliana, D. melanogaster.
Fig. 6. Mean times of formation Mn (in 1/ units) of a family of size n for the quadratic BDIM. 

The plot is in double logarithmic scale. Species (left to right): D. melanogaster, H. sapiens, A. thaliana and C. elegans.

Fig. 7. Mean times of extinction En (in 1/ units) of family of size n for the quadratic BDIM. 

Species (bottom to top): D. melanogaster, H. sapiens, A. thaliana and C. elegans.

Fig. 8. Mean times of formation Mn (in 1/ units) of a family of size n for the cubic BDIM. S

Species (top to bottom): D. melanogaster, C. elegans, A. thaliana and H. sapiens.

Fig. 9. The mean time of family formation for rational BDIMs.

The plot shows the dependence of  lnMn(k) on family size n<N for non-linear BDIMs of different degrees k=1+d: d=0 (linear BDIM), 0.2, 0.5, 0.8, 1., 1.3, 1.5, 1.7, 2 (top to bottom). The values of parameters a=5.16, b=6.43, N=1151 are from the previous analysis of the H. sapiens genome (Karev et al. 2002).

Table 1

 Domain families in sequence genomes and parameters of the best-fit linear BDIM

	
	No. of

Protein-coding genes
	No. of

detected

domain

families
	No. of

detected

domains
	No. of

proteins with

RPS-BLAST

hits
	Maximum

size of a

family
	a
	b
	(

	Sceb
	6340
	1080
	4575
	3331
	130
	1.55
	3.27
	2.72

	Dme
	13605
	1405
	11734
	7262
	335
	1.62
	2.79
	2.17

	Cel
	20524
	1418
	17054
	11090
	662
	1.13
	2.03
	1.89

	Ath
	25854
	1405
	21238
	15006
	1535
	3.80
	4.98
	2.18

	Hsa
	39883
	1681
	27844
	16755
	1151
	5.16
	6.43
	2.27

	Tma
	1846
	772
	1683
	1268
	97
	0.14
	2.22
	3.08

	Mth
	1869
	693
	1480
	1150
	43
	0.12
	2.00
	2.88

	Sso
	2977
	695
	1950
	1614
	81
	0.36
	2.04
	2.68

	Bsu
	4100
	1002
	3413
	2502
	124
	0.48
	2.01
	2.53

	Eco
	4289
	1078
	3624
	2765
	140
	0.84
	2.54
	2.70


Table 2. Linear BDIM. Probabilities of formation P(1,N), mean times of formation MN and extinction EN of a families of the largest size N.

	
	     N
	P(1,N)

*104
	   EN
	MN
	rdu
	R= MN/ EN

	Sce
	130
	0.284
	47.46
	20381.6
	1.903
	429.5

	Dme
	335
	0.227
	153.74
	37409.9
	1.784
	243.3

	Cel
	662
	0.160
	347.76
	68709.6
	1.523
	197.6

	Ath
	1535
	0.016
	702.65
	529639.
	2.382
	753.8

	Hsa
	1151
	0.026
	505.26
	300665.
	2.721
	595.1

	Tma
	97
	0.060
	31.47
	80677.3
	1.109
	2563.6

	Mth
	43
	1.125
	14.91
	4707.04
	1.091
	315.9

	Sso
	81
	0.461
	30.14
	12853.5
	1.253
	426.5

	Bsu
	124
	0.284
	48.89
	22921.0
	1.320
	468.8

	Eco
	140
	0.155
	51.67
	37959.8
	1.544
	734.7


Table 3. Quadratic BDIM. Probabilities of formation P(1,N), mean times of formation MN and extinction EN of a families of the largest size N.

	
	      N
	P(1,N) *102
	M(N)
	rdu
	E(N)
	R=

 MN / EN

	Sce
	130
	0.230
	249.80
	7.56
	2.82
	88.58

	Dme
	335
	0.404
	206.26
	11.67
	4.72
	43.71

	Cel
	662
	0.498
	215.36
	15.81
	6.61
	32.58

	Ath
	1535
	0.131
	638.27
	22.50
	5.98
	106.73

	Hsa
	1151
	0.166
	468.84
	24.48
	5.37
	87.31

	Tma
	97
	0.039
	1231.33
	3.27
	2.25
	547.26

	Mth
	43
	0.315
	166.47
	3.33
	2.03
	77.09

	Sso
	81
	0.233
	252.47
	4.33
	2.61
	97.11

	Bsu
	124
	0.212
	304.97
	5.09
	3.10
	98.38

	Eco
	140
	0.135
	431.85
	5.74
	2.90
	148.91


Table 4. Cubic BDIM. Probabilities of formation P(1,N), mean times of formation MN and extinction EN of a families of the largest size N.

	
	    N
	P(1,N)
	MN
	EN
	rdu
	R=

 MN / EN

	Sce
	130
	0.105
	4.60
	0.944
	92.46
	4.84

	Dme
	335
	0.222
	2.45
	1.390
	549.65
	1.76

	Cel
	662
	0.283
	2.10
	1.804
	2020.37
	1.17

	Ath
	1535
	0.255
	1.93
	1.390
	3754.83
	1.39

	Hsa
	1151
	0.254
	1.65
	1.291
	2938.07
	1.27

	Tma
	97
	0.019
	24.48
	0.781
	18.84
	31.4

	Mth
	43
	0.061
	7.85
	0.848
	18.26
	9.24

	Sso
	81
	0.073
	7.21
	0.960
	36.71
	7.51

	Bsu
	124
	0.088
	6.40
	1.059
	63.38
	6.04

	Eco
	140
	0.071
	7.34
	0.957
	65.06
	7.67
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